博客
关于我
C++折半查找的实现
阅读量:745 次
发布时间:2019-03-22

本文共 2235 字,大约阅读时间需要 7 分钟。

C++折半查找法的实现与理解

折半查找法,也称二分查找,是一种高效的查找算法,特别适用于已排序的数组。它通过不断缩小查找范围来快速定位目标元素。以下是关于折半查找法的详细实现和理解。

Fold-Halving Search in C++: Implementation and Explanation

Fold-halving, or binary search, is an efficient searching algorithm primarily used for sorted arrays. By repeatedly dividing the search interval in half, this method allows for rapid location of a target element. Below is the detailed implementation and explanation of fold-halving in C++.

Sorting: The Initial Step

Before performing fold-halving, the array must be sorted. The given array is sorted to facilitate the fold-halving process:

arr = {1,2,3,4,5,6,7,8,9,10,11}

Key Steps in Fold-Halving

  • Initialization:

    • Define low as the initial smallest index (0).
    • Define high as the initial largest index (10).
    • Calculate mid, the middle index of the array.
  • Loop Until mid is Within Bounds:

    • While low is less than or equal to high.
    • Compute mid as the average of low and high, using integer division for exact mid-point calculation.
    • Compare the target key with the element at mid.
  • Comparison and Range Adjustment:

    • If key equals arr[mid], return mid as the target's position.
    • If key is greater than arr[mid], set low to mid + 1 and adjust the search interval to [mid + 1, high].
    • If key is less than arr[mid], set high to mid - 1 and adjust the search interval to [low, mid - 1].
  • Example: Finding Target Element 7

  • Initial Setup:

    • low = 0, high = 10, mid = 5.
    • Target key = 7.
  • First Comparison:

    • arr[5] is 7. Return mid = 5.
  • Handling Edge Cases

    • Empty Array: Handle array size checks to avoid invalid operations.
    • Single Element Array: Directly compare the single element with the key.
    • Multiple Occurrences of Key: If the key is present multiple times, ensure the loop continues until all possible locations are exhausted.

    Cost of Fold-Halving

    The time complexity of fold-halving is O(log n), making it significantly more efficient than linear search for large arrays. The space complexity is O(1) as no additional data structures are used.

    Conclusion

    Fold-halving is an essential algorithm for efficient array searching. By leveraging sorted data and dividing the search space, this method quickly pinpoints the target element, demonstrating its efficiency and reliability in various applications.

    转载地址:http://tnxwk.baihongyu.com/

    你可能感兴趣的文章
    NeHe OpenGL教程 07 纹理过滤、应用光照
    查看>>
    NeHe OpenGL教程 第四十四课:3D光晕
    查看>>
    Neighbor2Neighbor 开源项目教程
    查看>>
    neo4j图形数据库Java应用
    查看>>
    Neo4j图数据库_web页面关闭登录实现免登陆访问_常用的cypher语句_删除_查询_创建关系图谱---Neo4j图数据库工作笔记0013
    查看>>
    Neo4j图数据库的介绍_图数据库结构_节点_关系_属性_数据---Neo4j图数据库工作笔记0001
    查看>>
    Neo4j图数据库的数据模型_包括节点_属性_数据_关系---Neo4j图数据库工作笔记0002
    查看>>
    Neo4j安装部署及使用
    查看>>
    Neo4j电影关系图Cypher
    查看>>
    Neo4j的安装与使用
    查看>>
    Neo4j(1):图数据库Neo4j介绍
    查看>>
    Neo4j(2):环境搭建
    查看>>
    Neo4j(3):Neo4j Desktop安装
    查看>>
    Neo4j(4):Neo4j - CQL使用
    查看>>
    Neo图数据库与python交互
    查看>>
    NEO改进协议提案1(NEP-1)
    查看>>
    Neo私链
    查看>>
    NervanaGPU 项目使用教程
    查看>>
    Nerves 项目教程
    查看>>
    nessus快速安装使用指南(非常详细)零基础入门到精通,收藏这一篇就够了
    查看>>